3,815 research outputs found

    Rightsizing LISA

    Get PDF
    The LISA science requirements and conceptual design have been fairly stable for over a decade. In the interest of reducing costs, the LISA Project at NASA has looked for simplifications of the architecture, at downsizing of subsystems, and at descopes of the entire mission. This is a natural activity of the formulation phase, and one that is particularly timely in the current NASA budgetary context. There is, and will continue to be, enormous pressure for cost reduction from both ESA and NASA, reviewers and the broader research community. Here, the rationale for the baseline architecture is reviewed, and recent efforts to find simplifications and other reductions that might lead to savings are reported. A few possible simplifications have been found in the LISA baseline architecture. In the interest of exploring cost sensitivity, one moderate and one aggressive descope have been evaluated; the cost savings are modest and the loss of science is not.Comment: To be published in Classical and Quantum Gravity; Proceedings of the Seventh International LISA Symposium, Barcelona, Spain, 16-20 Jun. 2008; 10 pages, 1 figure, 3 table

    Cosmic Microwave Background Radiation Anisotropy Induced by Cosmic Strings

    Full text link
    We report on a current investigation of the anisotropy pattern induced by cosmic strings on the cosmic microwave background radiation (MBR). We have numerically evolved a network of cosmic strings from a redshift of Z=100Z = 100 to the present and calculated the anisotropies which they induce. Based on a limited number of realizations, we have compared the results of our simulations with the observations of the COBE-DMR experiment. We have obtained a preliminary estimate of the string mass-per-unit-length ÎĽ\mu in the cosmic string scenario.Comment: 8 pages of TeX - [Color] Postscript available by anonymous ftp at ftp://fnas08.fnal.gov:/pub/Publications/Conf-94-197-A, FERMILAB-Conf-94/197-

    Isolating Geometry in Weak Lensing Measurements

    Full text link
    Given a foreground galaxy-density field or shear field, its cross-correlation with the shear field from a background population of source galaxies scales with the source redshift in a way that is specific to lensing. Such a source-scaling can be exploited to effectively measure geometrical distances as a function of redshift and thereby constrain dark energy properties, free of any assumptions about the galaxy-mass/mass power spectrum (its shape, amplitude or growth). Such a geometrical method can yield a ~ 0.03 - 0.07 f_{sky}^{-1/2} measurement on the dark energy abundance and equation of state, for a photometric redshift accuracy of dz ~ 0.01 - 0.05 and a survey with median redshift of ~ 1. While these constraints are weaker than conventional weak lensing methods, they provide an important consistency check because the geometrical method carries less theoretical baggage: there is no need to assume any structure formation model (e.g. CDM). The geometrical method is at the most conservative end of a whole spectrum of methods which obtain smaller errorbars by making more restrictive assumptions -- we discuss some examples. Our geometrical approach differs from previous investigations along similar lines in three respects. First, the source-scaling we propose to use is less demanding on the photometric redshift accuracy. Second, the scaling works for both galaxy-shear and shear-shear correlations. Third, we find that previous studies underestimate the statistical errors associated with similar geometrical methods, the origin of which is discussed.Comment: 13 pages, 4 figures, submitted to Ap

    Advanced techniques for determining long term compatibility of materials with propellants

    Get PDF
    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented

    Cosmic Shear of the Microwave Background: The Curl Diagnostic

    Get PDF
    Weak-lensing distortions of the cosmic-microwave-background (CMB) temperature and polarization patterns can reveal important clues to the intervening large-scale structure. The effect of lensing is to deflect the primary temperature and polarization signal to slightly different locations on the sky. Deflections due to density fluctuations, gradient-type for the gradient of the projected gravitational potential, give a direct measure of the mass distribution. Curl-type deflections can be induced by, for example, a primordial background of gravitational waves from inflation or by second-order effects related to lensing by density perturbations. Whereas gradient-type deflections are expected to dominate, we show that curl-type deflections can provide a useful test of systematics and serve to indicate the presence of confusing secondary and foreground non-Gaussian signals.Comment: 8 pages, 3 figures; PRD submitte

    A Demonstration of LISA Laser Communication

    Full text link
    Over the past few years questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in a previous article by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio

    A Test of the Copernican Principle

    Full text link
    The blackbody nature of the cosmic microwave background (CMB) radiation spectrum is used in a modern test of the Copernican Principle. The reionized universe serves as a mirror to reflect CMB photons, thereby permitting a view of ourselves and the local gravitational potential. By comparing with measurements of the CMB spectrum, a limit is placed on the possibility that we occupy a privileged location, residing at the center of a large void. The Hubble diagram inferred from lines-of-sight originating at the center of the void may be misinterpreted to indicate cosmic acceleration. Current limits on spectral distortions are shown to exclude the largest voids which mimic cosmic acceleration. More sensitive measurements of the CMB spectrum could prove the existence of such a void or confirm the validity of the Copernican Principle.Comment: 4 pages, 3 figure

    Characterization of Photoreceivers for LISA

    Get PDF
    LISA will use quadrant photo receivers as front-end devices for the phase meter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photo receivers. Some of the limiting noise sources have been identified and their contribution has been either measured or determined from the measured data. We have built a photo receiver with a 0.5 mm diameter quadrant photodiode with an equivalent input noise of better than 1.8 pA/(square root of)Hz below 20 MHz and a 3 dB bandwidth of 34 MHz

    Local variations in spatial synchrony of influenza epidemics

    Get PDF
    Background: Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. Methodology and Findings: We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. Conclusions: These findings highlight the complex nature of influenza spread across multiple geographic scales. © 2012 Stark et al

    Evaluation of Irrigated and Non-Irrigated Corn Production in Brookings County; Hog Comments

    Get PDF
    • …
    corecore